Counting and Correcting Thermodynamically Infeasible Flux Cycles in Genome-Scale Metabolic Networks
نویسندگان
چکیده
Thermodynamics constrains the flow of matter in a reaction network to occur through routes along which the Gibbs energy decreases, implying that viable steady-state flux patterns should be void of closed reaction cycles. Identifying and removing cycles in large reaction networks can unfortunately be a highly challenging task from a computational viewpoint. We propose here a method that accomplishes it by combining a relaxation algorithm and a Monte Carlo procedure to detect loops, with ad hoc rules (discussed in detail) to eliminate them. As test cases, we tackle (a) the problem of identifying infeasible cycles in the E. coli metabolic network and (b) the problem of correcting thermodynamic infeasibilities in the Flux-Balance-Analysis solutions for 15 human cell-type-specific metabolic networks. Results for (a) are compared with previous analyses of the same issue, while results for (b) are weighed against alternative methods to retrieve thermodynamically viable flux patterns based on minimizing specific global quantities. Our method, on the one hand, outperforms previous techniques and, on the other, corrects loopy solutions to Flux Balance Analysis. As a byproduct, it also turns out to be able to reveal possible inconsistencies in model reconstructions.
منابع مشابه
CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions
MOTIVATION Constraint-based metabolic modeling methods such as Flux Balance Analysis (FBA) are routinely used to predict metabolic phenotypes, e.g. growth rates, ATP yield or the fitness of gene knockouts. One frequent difficulty of constraint-based solutions is the inclusion of thermodynamically infeasible loops (or internal cycles), which add nonbiological fluxes to the predictions. RESULTS...
متن کاملMetabolomics integrated elementary flux mode analysis in large metabolic networks
Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodyna...
متن کاملErroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal
Energy metabolism is central to cellular biology. Thus, genome-scale models of heterotrophic unicellular species must account appropriately for the utilization of external nutrients to synthesize energy metabolites such as ATP. However, metabolic models designed for flux-balance analysis (FBA) may contain thermodynamically impossible energy-generating cycles: without nutrient consumption, these...
متن کاملA Scalable Algorithm to Explore the Gibbs Energy Landscape of Genome-Scale Metabolic Networks
The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based...
متن کاملtEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks
UNLABELLED : Elementary flux modes (EFMs) are important structural tools for the analysis of metabolic networks. It is known that many topologically feasible EFMs are biologically irrelevant. Therefore, tools are needed to find the relevant ones. We present thermodynamic tEFM analysis (tEFMA) which uses the cellular metabolome to avoid the enumeration of thermodynamically infeasible EFMs. Speci...
متن کامل